Industrial Resources Council: Tools and Resources

A sustainable materials technical support & outreach program

2012 Industrial Materials Conference
Indianapolis, IN
November 28-29, 2012

In the Beginning . . .

- Industry groups had always had separate efforts to work with Federal & state agencies
 - FHWA
 - US EPA
 - TRB
 - AASHTO
 - DOT's

US EPA Beneficial Use Summits

- Brought multiple stakeholders together
 - EPA funded travel for state regulatory agencies
 - 2002 Chicago meeting organized by NCASI
 - Stakeholders realized that barriers and opportunities were common among materials
 - Market development barriers:
 - Environmental, technical, economic
 - Annual Summits continued until 2008
 http://www.industrialmaterialssummit.com/2008/pastconf

Multi-stakeholder meetings build bridges

- FHWA recycling workshops
- Beneficial Use Summits
- RMRC regional workshops
- Green Highways Partnership
Why was the IRC formed?

- Material associations were engaging with same people in same forums
 - Similar issues & opportunities
 - Similar markets
- Create single point of contact for national & state partnerships
- Coordinate technology transfer & market development efforts
- Focus on high volume materials

How Much Material?

- **Generation Rate:**
 - CCPs: 122 million TPY
 - Steel Mill Residuals: 19.7 million TPY
 - Foundry Sands & Slags: 10 million TPY
 - Paper Mill Residuals, Boiler Ash & Others: 15 million TPY
 - Tires: 300 million tires/yr
 - Recycled Concrete: 180 million tons est.
 - 325 million total C&D

- **Number of Facilities:**
 - Power Plants: ~500
 - Steel Mills: ~130
 - Foundries: 2,800
 - Pulp & Paper Mills: ~430
 - Tires: Municipal, commercial & industrial generation points
 - Recycled Concrete: ~2,300

IRC’s Mission:

Level the Playing Field

- **Address barriers:**
 - Engineering
 - Economic
 - Environmental
 - Educational

- **Create Markets:**
 - Match characteristics of material to applications
 - Develop appropriate standards & specifications
 - Technology transfer to project designers & engineers
Engineering
- Acceptance of “new” materials tied to technical specifications & performance standards
 - Specifications should be performance-based, not material-based
- No centralized technical resources exists
 - Lots of success stories out there
- DOT leadership important
 - DOT’s set construction standards
 - Most pavement miles controlled at county or local level

Economic
- Sustainable economies require efficient material management systems to account for embedded costs
- Materials are typically the highest cost in any construction project
 - Recovered materials can save dollars
- Cost of testing & permitting real economic barrier
 - Unlike virgin materials, industrial materials from a single generator will be uniform
- For smaller quantity generators, commingling and co-processing will be only viable economic model
 - DOT’s with frequent testing requirements make that impossible

Environmental
- Playing field is not level
 - Naturally occurring background levels need to be considered
 - Comparable virgin materials need to be considered
- Markets cross state & local borders
 - Different state standards costly for multi-state end users or marketers
 - Industries need to be involved
- Case by case permitting especially costly
 - Often cost prohibitive for smaller generators
- Compliance costs for end users can be deal breakers

Educational
- Dialogues need to involve generators & agencies
- Educational efforts typically focus on DOT’s
 - Most construction isn’t DOT controlled
 - Contractors will ultimately determine materials usage in free market
- Tech transfer should focus on markets, not materials
IRC Market Applications

- Manufactured products
- Cement
- Asphalt
- Concrete pavement
- Concrete products
 - Brick, block, mortars
 - Flowable fill/CLSM
- Geotechnical applications
 - Bases and subbases
 - Structural fills
 - Embankments
 - Landfill construction
- Soil amendments
 - Manufactured topsoils
 - Nursery & grower soils

Construction - Engineered Fill

Cement Manufacturing & Concrete Products

Flowable Fill (CLSM)
Industrial Resources Council is a resource for information about how to use industrial materials in various applications.

IRC website

Industry Snapshots

- Where does each material come from?
- Info on generators
- How much material
- Most common uses
Material Profiles

- Snapshot of each material type
- Downloadable as PDF's
 - CCP's
 - Foundry Sands & Slags
 - Iron & Steel Slag
 - Pulp & Paper Industry Materials
 - Reclaimed Concrete Aggregate
 - Tire-Derived Materials

Application Profiles

- Structural fill
- Embankments
- Granular bases
- Stabilized bases
- PCC Concrete
- Hot Mix Asphalt
- Flowable Fill
- Portland Cement
- Other PCC concrete products
- Soil Stabilization

IRC matrix

- Matches between Materials and Applications
- Downloadable PDF
- E-version provides additional details

IRC E-matrix

- How is material used in this application?
- How does it perform?
- Technical issues?
- QA/QC Issues?
- Environmental issues?
- Other Resources
Other web portal needs

- More Applications
- Technical Library
- Case Studies
- Project Directory
- Presentations
- Events
- Resources
- More links

For More Information

American Coal Ash Association
www.acaa-usa.org

Construction Materials Recycling Association
www.cdrecycling.org
www.concretereycling.org

AFS-FIRST, Inc.
www.foundryrecycling.org

National Council for Air & Stream Improvement
269-276-3548
www.NCASI.org

National Slag Association &
www.nationalslag.org

Rubber Manufacturers Association
www.rma.org