CIVIL ENGINEERING APPLICATIONS OF TIRE DERIVED AGGREGATE

Dana N. Humphrey, Ph.D., P.E.
Dean of Engineering
University of Maine

Presented at:
Ohio Sustainable Roadway Materials Workshop
December 3, 2014

Outline

Why use TDA?

- Example projects
 - Boundary Road Project
 - Lightweight fill over reinforced concrete culvert

- Design parameters for TDA as retaining wall backfill

Why use TDA?

- TDA has properties that civil engineers need
 - Lightweight (1/3 soil)
 - Low earth pressure (1/2 soil)
 - Good thermal insulation (8 times better)
 - Good drainage (10 time better)
 - Compressible
 - Vibration damping

- Can use lots of tires!!!
 - 75 tires per yd3 of TDA fill
 - 1.2 million tires for highway embankment, Portland, Maine
 - 75,000 for vibration damping layer in San Jose, CA
 - 390,000 tires for highway embankment in Cornwall, Ontario
Boundary Road Project

- Cornwall, Ontario
- Reconstructed highway overpass
- Owner: Ontario Ministry of Transportation
- TDA
 - 5000 cubic yards
 - 3400 tons
 - Supplier: Liberty Tire, Brantford, Ontario

TDA Production

TDA Loading

Type B TDA
Monitoring Program

- Settlement
- Temperature
- Water Quality

Post Placement Compression of TDA layer – South Embankment
TDA as Lightweight Fill Over Concrete Box Culvert

- U.S. 101 – Piercy, California (Confusion Hill) – 200 miles north of San Francisco
- New highway alignment to avoid landslide area
- Existing 6.1 m x 6.1 m reinforced concrete culvert covered by 25 m of fill
- Must add 2 m of fill for road realignment
- Problem: No load can be added to culvert
- Solution: Use TDA as lightweight fill

Confusion Hill Project

Longitudinal Cross Section

Confusion Hill – Initial Conditions
Confusion Hill – TDA Delivery

Confusion Hill – During Construction

Confusion Hill – Completed Project

Design Parameters for TDA as Retaining Wall Backfill

- Earth pressure coefficient
 \[K = \frac{\sigma_h}{\sigma_v} \]
Instrumented Walls

- **At-Rest Conditions**
 - UMaine Test Wall
 - North Abutment Merrymeeting Bridge
 - Limestone Run Bridge, Tarrtown, PA
- **Active Conditions**
 - UMaine Test Wall
 - Wall 119 Riverside, CA
 - Wall 207 Riverside, CA

Pressure cells

Wall 119 in Riverside, CA

Compacting TDA
Placing soil cover

- Heavy equipment immediately behind wall!!!

Horizontal vs. Vertical Stress (Cells in Soil)

- Wall 119 - Soil Control Section
- Wall 207 - Soil Control Sections
- Wall 207 - TDA Test Sections (Cells in Soil)
- Tarrtown - TDA Test Abutments (Cells in Soil)
- Tarrtown - TDA Test Abutments (Cell in Rock Fill)*

K=0.3

*Rock Fill consists of ± 6-in. ripped angular bedrock fragments

Horizontal vs. Vertical Stress (Cells in TDA, At Rest Sections)

- Tarrtown - TDA Test Abutments (Cells in TDA)*
- Merrymeeting Bridge - TDA Test Abutment (Cells in TDA)
- Tweedie, At Rest Conditions (Cells in TDA)*
- Tweedie, At Rest Conditions (Cells in TDA)**

K=0.3

*No surcharge

Horizontal vs. Vertical Stress (Cells in TDA, Active Sections)

- Tarrtown - TDA Test Abutments (Cells in TDA)
- Tweedie, Active Conditions (Cells in TDA)*
- Tweedie, Active Conditions (Cells in TDA)**
Example of Potential Benefits

Conclusions

- TDA has properties that engineers need
- Civil engineering applications are critical to managing scrap tires
- Highway applications
 - Lightweight embankment fill
 - Lightweight fill over culverts
 - Retaining wall backfill
- Specifications and guidelines available
- Negligible environmental effects

QUESTIONS?