

Definition of Steel Slag

The American Society for Testing Materials (ASTM) defines Steel Slag as a non-metallic by-product, consisting of essentially calcium silicates and ferrites combined with fused oxides of iron, aluminum, manganese, calcium and magnesium, that is developed simultaneously with steel in basic oxygen, electric arc, or open-hearth furnaces.

Characte	erization			
Typical Steel Slag	Chemical Composition	Typical Physical Prope	rties of Steel Slag	
Constituent	Composition (%)	Property	Value	
		Specific Gravity	3.2 - 3.6	
CaO	40 - 52	Unit Weight (lbs./cu.ft.	100 - 125	
SiO ₂	10 - 19	Absorption	Up to 4%	
FeO	10 - 40			
MnO	5 - 8	-		
MgO	5 - 10	- 2		
Al ₂ O ₃	1 - 3	Frank)	k.	
P ₂ O ₅	0.5 - 1	1252	1	
s	< 0.1	ee	and the second second	
Metallic Fe	0.5 - 10			

	•	1			
Reference	Siag Type		Mesh Size		
	second and they	20	60	100	
Munn (1997)	Blast furnace	23	5.9	4.0	
	Steel furnace	18	6.7	6.5	
	Metallic steel	11.7	4.9	11.9	
Kerins (2008)	AgSlag	66.6	29.8	22.8	
Beauchamp and Evans (1999)	Erie slag	42*	4	4	
	Hilton slag	29	9	13	
White et al. (1937)	20 mesh slag	98.6	89.9	77.5	
	Slag meal	100	97.3	87.1	
National Slag Association	Fine aggregate		32-70	5-15	

Analytical Tests for Lime in Steel Slag

- Determined by reacting the material with excess strong acid and back titrating the residual acid.
 - Expressed in terms of its equivalency to limestone.
- Calcium Carbonate Equivalent (CCE
- ASTM C-25 (1965)
- ► AOAC 944.01 (1995)
- ASTM C-25
- Ferric Acid
 - Set Point
 Colorimetric vs measured (sp)

Analysis	Basic Slag				Ground Limestone		
	1957	1964	1975	1997	2003	(Minimum Quality)	
Neut. Value (%CCE)	78	68	55	60	85	90+ (**)	
Phosphorous (% P2O5)	10.9	7.4	2.1	0.3	0.7		
Iron		17.9		24.4	26.2		
Calcium		22.7			23.6		
Magnesium		2.8		4.9	6.5	6+ in Dolomite	
Manganese		1.8		2.6	1.2		
Zinc		<0.1		0.1	0.1		
Boron		<0.1			0.06		
% Passing #60 Mesh					35	50+	
% Passing #100 Mesh	80	70	80	50			

	Sil	icon in Agric	ulture
PhysicBioche	al emical	J. Plant Aue: Sel So. 2005. 140. 300–374 Osmobilo stress and silicon in In bartey against bartey pour Jackine Mean", teske titrari, and Sche Vander of Auer Martin. Yet Boylener R. D. 50302 (Selan, German)	DOX 10 YES/000000000 200 bct additively in enhancing pathogen resistance day mildow www.initext.tatasti* www.initext.tatasti*
File/	Exclusion (2001) 11.4 (* 14.44) ects of foliar- and root-applies induced resistance to powder Ling ⁴⁴ , W. G. Sur, J. S ² , J. and V. Ro in the arrivation of the state of the state arrivation of the state of the state of the state or or the state of	De ILLITE DE ANT CONTRA di silicon on the enhancement ry mildew in <i>Cucumis sativus</i> mild ¹ : or net anno en transformationes en internationes en transformationes en en anternationes en anternationes en anternationes en en anternationes en anternationes en anternationes en anternationes en en anternationes en anterna	
	Tenak of Assary 72: 433-444, 1985 The Effects of Silicon Supplement A. L. SAMUELS*T, A. D. M. * Dependent of Assary, E. & C., Faccare	nation on Cucumber Fruit: <u>Changes in Su</u> Characteristics GLASSY, D. L. EDR ETV and J. G. MENZIESI van V. Argusher Causia Rosend Status, Agents, Br Caberda Causa	Reduct or default of interface to schere , generative to schere , being of ordering a glass models stratistical . The schere face of the schere and the schere of the schere . Schere Schere Schere Schere . Schere Schere Schere Schere . Schere Schere . Schere Schere .

Compost

Processing livestock waste requires a system that provides high quality compost in a short period of time. [Solution] The system promotes composting by reusing steel slag, which is a by-product of the steel industry and has not been effectively utilized in the past, as a raw material mixed with livestock waste; and efficiently utilizes soluble silicic acid, lime, iron and the like included in the steel slag as a fertilizer resource. This system is capable of reducing the time to produce compost by: accelerating the temperature increase at the beginning of composting so that the temperature of a mixture of livestock waste and steel slag reaches at least 50°C within 48 hours after mixing; and reducing the moisture content of the mixture to 30 to 50%.

USEPA Pollutant Ceiling IDEM Pollutant Ceiling SDI Composite Compost Concentrations* Concentrations** Cells 1-9 mg/kg (dry basis) mg/kg (dry basis) mg/kg (dry basis) Arappio	
Cadmium 95 30 9	
Copper 4.300 1.500 53	
Lead 840 300 9	
Mercury 57 17 <1	
Molvbdenum 75 75 9	
Nickel 420 420 220	
Selenium 100 100 BDL	
Zinc 7,500 2,800 170	

USDA / EPA Regulatory Limits Table 1. Regulatory limits on heavy metals applied to soils (Adapted from U.S. EPA, 1993). Heavy metal Maximum Annual pollutant Cumulative pollutant concentration loading rates loading rates in sludge (mg/kg or (lb/A) (kg/ha/yr) (lb/A/yr) (kg/ha) ppm) Arsenic 2 1.8 1.7 41 39 36.6 Cadminum 85 1.9 34.8 Chromium 3000 150 134 3000 2,679 Copper Lead 75 1500 1 340 4300 67 375 420 21 14 420 Mercury 840 13.4 300 17 268 Molybdenum 57 0.85 0.80 15 Nickel 75 0.90 0.80 18 16 Selenium 100 89 2500 4 100 2800 Zinc 7500 140

American Association of Plant Food Control Officials (AAPFCO)

 Statement of Uniform Interpretation and Policy (SUIP) #25 "The Heavy Metal Rule

Metals	ppm per 1% P ₂ O ₅	ppm per 1% Micronutrient ³
Arsenic	13	112
	10	83
Cobalt	1366	2,2286
	61	463
	1	6
Molybdenum	42	3004
	250	1,900
Selenium	26	180
	420	2,9004

Conclusions

- Careful selection and processing of appropriate slag qualities ensures an effective activity in the soil.
- Verify both agricultural and environmental requirements for land application.
- ► Compare metals limits to both local soils and regulations
- Steel Slag can be an economical and efficient Liming Material for ph adjustment in agricultural applications.
- Follow typical liming recommendations.
- Steel Slag can provide nutrients when properly processed.
- Calcium Silicate slag can be a beneficial substance for plants.
- Steel Slag can be an excellent addition to Compost.

