The Use of Scrap Tires in Asphalt & as an Aggregate

Michael Blumenthal
Rubber Manufacturers Association
IRC/FHWA Webinar
July 8-9, 2014

Rubber Manufacturers Association
• Represents the 8 US tire manufacturers
• Created scrap tire program in 1990
• Focus on development of sound markets and management for 100% of annually generated scrap tires
• Elimination of all scrap tire piles in an environmentally and economically sound manner

What is Rubber Modified Asphalt?
• Rubber modified asphalt is a generic term used to describe all technologies that incorporate tire rubber into any portion of asphalt pavements
• There are 4 basic technologies:
 – Wet process
 – Dry process
 – Warm mix
 – Terminal blending
The Use of Scrap Tires in Asphalt & as an Aggregate

Ground Tire Rubber

Advantages of Asphalt Rubber

• Reduces impact of aging
 – Antioxidants & antiozidants in tire rubber
• Reduces cracking
• Use as an overlay on distressed roads delays need for reconstruction
• Reduces “spray” effect when raining

Advantages of Asphalt Rubber

• Reduces braking distances
• Reduces road noise
• Allows usage of very high binder contents which greatly improve aging properties
• Very good in resisting reflective cracking

Other Considerations

• Highway & road construction now being viewed as a “quality of life’ issue
• Focus will be on reducing road noise
• Reduction of road noise can be obtained by building sound walls or use of rubber modified asphalt, or both
• Cannot be used on all roads; where used properly good results obtained
The Use of Scrap Tires in Asphalt & as an Aggregate

Other Considerations

• Cost of asphalt & modifiers likely to remain at current levels
• Use of tire rubber could actually decrease cost of construction via substitution for more expensive asphalt & binders
• DOT budgets unlikely to be increased soon: AR good for repair & overlays

Conclusions

• Rubber modified asphalts have specific applications where they have competitive advantages
• Understanding the technology is a key to a successful application
• Likely, continued increases in asphalt costs will change construction practices
• Federal & state agencies will place greater emphasis on “green” roads

The Use of Tire Shreds in Roadway applications

• Defined as the use of scrap tires, usually shredded, in lieu of conventional construction materials
• A substitute for gravel, sand, light-weight fill materials
• Today referred to as tire-derived aggregate (TDA)

Tire Shreds?

Michael Blumenthal - 2014 FHWA Sustainable Materials Webinar - IndustrialResourcesCouncil.org
Specifications

- **Type A** – drainage and insulation
 - 100% passing 100-mm sieve
 - Minimum of 90% passing 75-mm sieve
 - Maximum of 5% passing 4.75-mm (no. 4) sieve
- **Type B** – lightweight fill
 - 100% smaller than 450 mm max. dimension
 - 90% smaller than 300 mm max. dimension
 - Maximum of 25% passing 37.5 mm
 - Maximum of 1% passing 4.75-mm (no. 4) sieve

Guidelines

- ASTM D6270 “Civil Engineering Applications of Scrap Tires”
- Guidelines to limit heating
- Water quality studies: Above & below groundwater table + comprehensive compendium of all leachate reports

Why Use Tire Shreds?

- Tire shreds have properties that civil engineers need
 - Lightweight (1/3 weight of soil)
 - Low earth pressure (1/2 of soil)
 - Good thermal insulation (8 times better soil)
 - Good drainage (10 time better than soil)
 - Compressible

- Light weight and low earth pressure are very beneficial where there is poor soil structure
 - Weak foundation soils
 - Increase slope stability
 - Reduce settlement
 - Landslide stabilization
Why Use Tire Shreds?
- Tire shreds can improve engineering performance
- Tire shreds are often the least cost alternative if you need their unique properties

Roadway Applications
- Lightweight fill for highway embankments
- Retaining wall backfill
- Insulation to limit frost penetration
- Vibration attenuation for rail lines

Tires Used as Lightweight Backfill
- Tire shreds have relatively lower bulk density re: stone and clean fill
- Can use rough shreds (6-8 inches long)
- Lower cost than other lightweight backfill materials

Placing tire shreds behind abutment
The Use of Scrap Tires in Asphalt & as an Aggregate

Construction Procedure

Leachate from Tire Shreds Above/Below Water Table
- Primary drinking water standards
 - No effect
- Secondary drinking water standards
 - Manganese & iron
 - Not significant
- Organics
 - No effect

Available Information
- +120 reports on CE applications
- Leachate studies (U. Maine)
- Scrap tire market reports
- Advanced training course on use of tire shreds in landfills (provided by RMA)
- EPA RCC DVD on TDA
- www.rma.org/scrap_tires

Conclusions
- Tire shreds have properties that engineers need
- Tire shreds are cost effective
- Civil engineering applications can use large quantity of tires & can be quickly done
- Specifications and guidelines exist
The Use of Scrap Tires in Asphalt & as an Aggregate

Michael Blumenthal
Rubber Manufacturers Association
1400 K Street NW
Washington, DC 20005
(202) 682-4882
michael@rma.org
WWW.RMA.ORG

QUESTIONS?